Shallow water equations with a complete Coriolis force and topography
نویسندگان
چکیده
This paper derives a set of two dimensional equations describing a thin inviscid fluid layer flowing over topography in a frame rotating about an arbitrary axis. These equations retain various terms involving the locally horizontal components of the angular velocity vector that are discarded in the usual shallow water equations. The obliquely rotating shallow water equations are derived both by averaging the three dimensional equations, and from an averaged Lagrangian describing columnar motion using Hamilton’s principle. They share the same conservation properties as the usual shallow water equations, for the same energy and modified forms of the momentum and potential vorticity. They may also be expressed in noncanonical Hamiltonian form using the usual shallow water Hamiltonian and Poisson bracket. The conserved potential vorticity takes the standard shallow water form, but with the vertical component of the rotation vector replaced by the component locally normal to the surface midway between the upper and lower boundaries.
منابع مشابه
An energy and potential enstrophy conserving numerical scheme for the multi-layer shallow water equations with complete Coriolis force
We present an energyand potential enstrophy-conserving scheme for the non-traditional shallow water equations that include the complete Coriolis force and topography. These integral conservation properties follow from material conservation of potential vorticity in the continuous shallow water equations. The latter property cannot be preserved by a discretisation on a fixed Eulerian grid, but e...
متن کاملPort-Hamiltonian formulation of shallow water equations with coriolis force and topography∗
Port based network modeling of complex lumped parameter physical systems naturally leads to a generalized Hamiltonian formulation of its dynamics. The resulting class of open dynamical systems are called “Port-Hamiltonian systems” [12] which are defined using a Dirac structure, the Hamiltonian and dissipative elements. This formulation has been successfully extended to classes of distributed pa...
متن کاملNew Developments and Cosine Effect in the Viscous Shallow Water and Quasi-geostrophic Equations
The viscous Shallow Water Equations and Quasi-Geostrophic Equations are considered in this paper. Some new terms, related to the Coriolis force, are revealed thanks to a rigorous asymptotic analysis. After providing well-posedness arguments for the new models, the authors perform some numerical computations that confirm the role played by the cosine effect in various physical configurations. Ke...
متن کاملA New Two-dimensional Shallow Water Model including Pressure Effects and Slow Varying Bottom Topography
The motion of an incompressible fluid confined to a shallow basin with a slightly varying bottom topography is considered. Coriolis force, surface wind and pressure stresses, together with bottom and lateral friction stresses are taken into account. We introduce appropriate scalings into a three-dimensional anisotropic eddy viscosity model; after averaging on the vertical direction and consider...
متن کاملShelfbreak upwelling induced by alongshore currents: analytical and numerical results
Alongshore flow in the direction of propagation of coastal trapped waves can result in upwelling at the shelfbreak. The intensity of this upwelling can be comparable in magnitude to wind-driven coastal upwelling, with its associated ecological features. Recent numerical experiments by Matano & Palma indicate that this upwelling results from convergence of Ekman transport at the shelfbreak. The ...
متن کامل